If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6i^2+12i=0
a = 6; b = 12; c = 0;
Δ = b2-4ac
Δ = 122-4·6·0
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$i_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$i_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$i_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12}{2*6}=\frac{-24}{12} =-2 $$i_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12}{2*6}=\frac{0}{12} =0 $
| 7b+15=3(3b-7) | | -y8=-3y-15 | | 9(x-9)=9(x-18) | | 3(4x+7)=4x-5 | | 3(2m-2)=2(-3m+9) | | 4-5x+1=-38 | | -y8=-3-15 | | 113.4=x(18)x=6.3 | | 200x+.15=347 | | 6/4x=9/2 | | 9(x-6)=6(x-4) | | x9(x−9)=81 | | x/7-5=-13 | | 5(x−7)2+10=−35 | | 2x+5x8=3x+4x6 | | w/20=12/20 | | Y=(x-3)(x+12) | | x/7-5=13 | | x(31)=24(37) | | 4x^2-4x-3÷=2x-3 | | 137=k | | 3/7m=2/7 | | 4x*2x=10 | | 34=y | | –366=w+–898 | | (x+15)=50 | | 1x*3.4x=345125 | | 1x+3.4x=345125 | | 2=a=9 | | (2r+20=)130 | | (2x+3=)69 | | x-4(x+2)=-15.5 |